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This work develops and demonstrates an approximate theory for the mean turbulent 
near-wake of cylindrical bodies with blunt after edges. A closed free-streamline 
model is used to relate base pressure to the separation-streamline length. The 
additional relationship between base pressure and streamline length required for 
closure is an extension of the maximum dissipation hypothesis of Malkus, which was 
originally proposed for the turbulent-channel-flow problem. In the current 
application, the Malkus hypothesis leads to maximization of the rate of change of 
mean kinetic energy along the separation-cavity streamline. 

The theory is implemented in terms of a linearized closed free-streamline theory of 
thin blunt-based symmetric sections, which was actually developed as an application 
to supercavitation, rather than separation. The calculations performed compare 
quite well with experimental measurements of mean base pressures and section drag. 
However, the linearizing assumptions on section-cavity slenderness and base- 
pressure magnitude are not so well preserved in the calculated results. Numerical 
analysis in terms of a nonlinear closed free-streamline model is a possible recourse. 
However, an important class of problems where the assumptions required in 
applying the linear theory may be better represented by the prevailing physics is the 
superseparation of thin lifting foils. This would appear to be the immediately most 
fruitful direction for the work, as a very mature theory of linearized supercavitation 
of thin lifting foils is available for providing the required free-streamline model. 

Even though the formulation contains the effects of turbulent dissipation, the 
intricacies of the wake turbulence are avoided in achieving the solution. The lumped 
mean turbulent transfer rate per unit length of the mean dividing streamline is 
quantified, and defined in terms of the turbulence variables. Because of this, it  is 
suggested that the theory may prove useful as a tool for studying wake turbulence 
characteristics. 

1. Introduction 
The subject of this paper is the high-Reynolds-number incompressible time- 

average turbulent flow behind two-dimensional shapes whose trailing edges are 
blunt, such that the separation-point positions are well defined (e.g. a wedge). 

Experimentally, two-dimensional mean ‘base flow ’ exhibits a closed cavity of 
relatively quiescent fluid separated from the largely ideal irrotational outer field by 
free shear layers. In the laminar case, below the critical Reynolds number prior to the 
appearance of vortex streets, the flow is essentially a steady pressure-driven flow 
characterized by two large symmetrical stationary eddies centred toward the rear of 
the separation cavity. Suitable theories have been proposed for this case (Smith 
1985). 
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In the high-Reynolds-number turbulent case of interest here, the base flow is 
highly unsteady, being composed of a mean flow, onto which the shed boundary- 
layer turbulence and the coherent unsteadiness of the vortex streets are super- 
imposed. Nevertheless, the experimental evidence is clear that, even in the midst 
of this chaotic unsteadiness, a mean streamline can be found which separates a 
basically stagnant interior flow, in the mean, from a basically ideal irrotational 
exterior mean flow (Russel 1958). The physics of the cavity closure are, however, very 
different from the steady subcritical laminar case. The turbulent base flow is 
Reynolds stress, rather than pressure, dominated. The closure results primarily from 
energy dissipation in the wake through nonlinear turbulence processes. 

Anatol Roshko, in his famous paper (Roshko 1955), points out that the mean base 
pressure is intimately related to  the mechanics of the wake turbulence, and that 
therein lies the key to a complete theory of turbulent base flow. Roshko also argues 
that either of the classic Kirchhoff or Raibouchinsky free-streamline models 
(Kirchhoff 1869; Raibouchinsky 1926) are valid elements of such a complete theory, 
but that  an additional relationship between the wake turbulence and the mean base 
pressure is needed for system closure. Roshko then attempts to exploit a proposition 
of Heisenberg (1922) for coupling a modified Kirchhoff free-streamline model to 
Karman’s vortex-street model for the downstream wake. However, owing to 
uncertainties regarding the fraction of the total free-streamline vortex strength 
leaving the body which ultimately appears in the periodic street vortices 
downstream, Roshko’s solution is not free of empiricism, requiring specific knowledge 
of the vortex shedding frequency for any particular case. 

In  the current proposition, the concept of the Raibouchinsky closed-streamline 
model is selected over the open-streamline model of Kirchhoff for providing the 
relationship between free-streamline geometry and base pressure. Following 
Kirchhoff, Raibouchinsky retained the assumption of uniform pressure within the 
separation cavity, but allowed for a lower cavity pressure by closing the free 
streamlines at some distance downstream of the separation points. Raibouchinsky’s 
procedure, of course, does not define the cavity pressure and is therefore non-unique; 
the closed-streamline geometry is determinant only upon specification of the uniform 
cavity pressure. For the case of liquid supercavitation, where the uniform cavity gas 
pressure can be approximated as the known liquid vapour pressure, the basic 
Raibouchinsky concept is applied to this day. However, for ‘ superseparation ’, 
versus supercavitation, the base pressure is not obvious a priori. The additional 
relationship between cavity pressure and cavity geometry needed for uniqueness, 
which must necessarily involve the wake turbulence, has never appeared. Other than 
the remark of Roshko noting the general applicability to the turbulent-base-flow 
problem, the basic Raibouchinsky closed free-streamline concept does not appear to  
have been considered, until now, for application to  other than liquid cavitation 
flows. 

The classic theory of W. V. R. Malkus, which was specifically developed for the 
case of turbulent channel flow (Malkus 1956), is adapted here for providing the 
second relationship needed for closing a theory for turbulent base flow. The so-called 
‘Malkus hypothesis’ is composed of a number of parts. The two parts most relevant 
to the current work are, stated concisely: 

(i) the mean nonlinear momentum transport is entirely dissipative ; 
(ii) the dissipation rate is maximum. 
These Malkus hypotheses are implemented with a closed free-streamline model of 

the separation cavity to  achieve uniqueness in evaluating the mean base-flow 
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FIGURE 1. Section and cavity configuration. 

characteristics of blunt sections. The implementation is accomplished by first 
lumping the mean wake vorticity as a vortex distribution along the separation 
streamline. This is an inherent requirement of the closed free-streamline model ; the 
vortex strength is determined in terms of the unknown base pressure and the length 
of the mean streamline. The rate of change of vortex strength along the streamline 
is next related to the mean nonlinear turbulent transport by way of Helmholtz 
vorticity equation. The implied dissipation rate is then maximized, within the family 
of pressure-streamline length characteristics of the closed free-streamline model, to 
produce the required second relationship between base pressure and cavity length. 
The development details follow. 

2. Turbulent dissipation 
Consider the body to be of infinite span with a cylindrical section typical of the 

wedge depicted on figure 1. The cylinder is fixed in a uniform stream of velocity U 
in the negative x-direction as indicated. 

The field velocity vector is generally a function of the three spatial coordinates as 
well as time, V ( x , y , z , t ) .  Ensemble average V in the z-direction over the infinite 
length of the cylinder. Assume V to be isotropic in z so that the spatial mean in z is 
also a temporal mean. Denote this mean velocity as V(x,y). With zero mean flow 
along the axis of the cylinder, V(x,y) is a two-component vector in cross-sectional 
planes. 

Denote the variable component of V with zero mean in z and t as V,(x, y, z, t )  such 
that 

Take the curl of (1) to  produce the field vorticity vector as 

N x ,  y, 2, t )  = o ( x ,  y) + q ( x ,  y, 2, t ) .  (2) 

Notice that o ( x ,  y) in (2) is a single x-component vector due to  the two-dimensionality 
of V(z, y) in (1).  

The Helmholtz vorticity equation in three dimensions is 

(3) 
am 
at 

p--p(o*V)  V+p( V.V)w = yv2o. 
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Focus attention on the z-component equation of (3), which exclusively involves 
the one-component mean vorticity vector o ( x ,  y), which is the unknown of direct 
interest. Substitute (1) and (2) into the z-component equation of (3),  and apply the 
averaging operator to produce the following equation for the two-dimensional mean 

(4) 
flow : 

Here the overbar denotes a non-zero averaged result. 
The mean nonlinear turbulence terms in (4) are the transfer to the turbulent 

dissipation scales, and according to the first of the Malkus hypotheses, the terms are 
entirely dissipative. They can be modelled as Reynolds stresses in terms of a 
turbulent diffusion, or dissipation, coefficient and incorporated with the molecular 
diffusion effect on the right-hand side of (4). If this is done the turbulent dissipation 
coefficient superimposes with the dynamic viscosity. Then, on elevating the Reynolds 
number Re to its assumed high level, the molecular diffusive effect becomes higher 
order relative to the turbulent dissipation, and can be discarded from the 
formulation. 

Discard the molecular diffusion term in (4) as being higher order and denote the 
entire collection of turbulence terms as R(x,y). That is, 

( 5 )  
for Re very high. 

It is now necessary to accept the existence of a mean dividing streamline 
traversing through the midst of the turbulent base flow. This streamline is viewed 
here as being approximately coincident with the midline of a mean turbulent shear 
layer which separates the outer ideal irrotational flow from the largely quiescent 
mean field within the separation cavity. 

Referring to figure 2, denote by s the coordinate along the dividing streamline, 
positive downstream, with n normal, and lump the vorticity of the mean shear layer 
surrounding the streamline onto the streamline as 

-p(ol.vVlz) +p( F+VO,,) +pV*( VO) = /!AVO. 

R(s, y) +pvq Vw) = 0, 

m, 4 = y(3) W ) .  (6) 

Likewise write the mean field velocity in the streamline coordinates as 

V(s ,  n) = V,(s, 4 e, + VJs, 4 en, (7) 

with the normal velocity on the streamline V,(s, 0) = 0. 

direction across the shear layer to  produce 
Substitute (6) and (7) into ( 5 )  and integrate the resulting equation in the n- 

d 
ds 

R(s,) dn+p-(V,y) = 0. 

Equation (8) applies along the separation streamline n = 0. 
With the assumption of a stagnant flow inside the streamline, the vortex density, 

y in (8), being equal to the velocity jump across the streamline, is just twice the 
streamline velocity, V,(s,O). Replace y by 2Vs(s,0) in (8) and multiply the entire 
equation by a: 

This is now an equation for the mean streamline velocity V,(s). 
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FIQURE 2. Conditions along the separation streamline. 

The right-hand side of (9) is immediately recognized as the negative of the rate of 
change of mean kinetic energy per unit length of the dividing streamline, say A’(s). 
Redenote the collection of turbulence terms in (9) as d ’ ( s ) .  Equation (9) is then 
simply 

d‘ in (10) is identified as the rate of turbulent dissipation of mean kinetic energy per 
unit length of the streamline. The rate of change of kinetic energy density in (10) is 
negative, as the streamline velocity decreases with increasing s toward cavity closure 
downstream; this implies a positive dissipation rate, by (lo), as is required. 

By the second of the Malkus hypotheses, the dissipation rate is to be maximum. 
In constructing a dissipation functional to be maximized in seeking a closure 
relationship for the mean base flow, first integrate (10) in s : 

d ’ ( s )  = -A’(s) .  (10) 

d ( s ) - d ( 0 )  = A ( 0 ) - A ( s ) .  (11) 

d ( s )  is now the dissipation per unit length of the streamline. s = 0 corresponds to the 
body separation point and s = I is the stagnation point at  cavity closure. Take 
d(0) = 0, since the bulk of the turbulent dissipation occurs after the onset of the 
global instability of the free shear layers and their degeneration into vortex streets, 
which is at some finite distance downstream of the separation points. Note from (1 1) 
that the dissipation per unit length (as well as its rate) will be maximum at 
streamline closure, s = 1, where the kinetic energy density is zero. This is consistent 
with experimental evidence (Rouse 1961). 

The total dissipation along the streamline 9 is obtained by integrating (1 1) over 
the length of the streamline: 

9 = bV,Z (0) 1 -b (12) 
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Here the kinetic energy density has been rewritten in terms of the streamline 
velocity. 

An average rate of dissipation over the length of the streamline 9' is now obtained 
by dividing the total dissipation by the streamline length: 
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9' is the functional that will be maximized in implementing the Malkus hypothesis. 
V,(s) along the streamline in (13) can be written in terms of the base pressure, say 
Pb, and the streamline length by acknowledging conditions of streamline equilibrium. 
A second kinematical relationship between the base pressure and the streamline 
length, sayf(Pb, 1)  = 0, is given by the closed free-streamline model for the separation 
cavity, as will be shown. 9' is therefore a functional on Pb and 1 which is to be 
maximized subject to  the equality constraintf(P,, 1 )  = 0. This is readily executed, in 
concept, to uniquely determine Pb and 1 for a given body geometry. 

It can be observed from (13) that the dissipation functional is equivalent to the 
maximum kinetic energy density of the separated shear layer, which exists a t  the 
separation point, less its average value over the separation cavity length. It is 
important that this functional can be interpreted as approaching zero in both limits 
of long and short separation cavitites, utilizing the concepts of free-streamline 
theory. 

The limiting long cavity is represented by the open Kirchhoff model in its near 
field. The entire turbulent dissipation might be viewed as occurring at the singular 
closure of this cavity a t  infinity, where the closure radius of curvature, relative to 
length, is zero. But the dissipation rate, by (13), over the infinite length of the 
Kirchhoff cavity is zero, as the constant free-streamline velocity gives an average 
kinetic energy density of the shear layer equal to its maximum value a t  separation. 

The short-cavity limit, on the other hand, is the fully attached potential flow. 
Here, the average and maximum kinetic energy densities of (13) again cancel, but 
this time in singularities over the infinitesimally short cavities, as they collapse back 
into the separation points. 

The existence of a non-zero, and in fact maximum, rate of dissipation of turbulent 
energy, by (13), between these two separation-streamline length extremes is essential 
to this work. But this is considered as implied by the prevailing logic. 

3. Closed free-streamline model 

the separation cavity to  give 
Referring back to  figure 1, the Navier-Stokes equations can be integrated inside 

p - +  V--V- = H - ( x , y ) .  (14) 

All variables are now expressed non-dimensionally , with the non-dimensionalization 
on the section length L, the stream speed U ,  and the water density p.  Pressures and 
forces are relative to the dynamic head $U2. H - ( x ,  y) in (14) is the 'total head ' inside 
the separation cavity, which varies in an unspecified way with position within the 
cavity. 

Assume that the fluid velocity inside the cavity is small, relative to a small 
parameter E ;  E should in some way be related to Reynolds number, decreasing as the 
Reynolds number increases. V -  = o ( E ) ,  such that to  O(c) ,  from (14), 

P - k ,  y) = m x ,  y) + O ( E ) .  
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Further, write 

(15) 

Define the first term in (15) as the 'base pressure', p,, and assume it to be O(1). 
Assume the difference between the base pressure and the cavity interior field pressure 
in (15) to be O( V-). The relative cavity pressure is then, to lowest order, 

'b = Pb-Pco' (16) 

With p ,  representing the static pressure of the uniform stream, Pb is the base 
pressure coefficient, by the usual definition. 

It is very convenient at  this point to assume that both pb and p ,  are O( l),  but that 
their difference, P,, is E order. If this is done, and the section and attached cavity are 
furthermore together assumed to be slender, with the slenderness parameter taken as 
E ,  then the generally nonlinear closed free-streamline theory reduces to the linear 
theory of steady two-dimensional supercavitation (Tulin 1953, 1955). It is only 
necessary that the cavitation number appearing in that theory be replaced by 
- Pb. For the sake of completeness, the required free-streamline solution by way of 
the linearized supercavitating theory is outlined as follows. 

3.1. Linearized theory 

First restrict the geometry to symmetric (non-lifting) sections. This is in the interest 
of simplicity of the demonstration ; the linearized procedure applies similarly to the 
lifting case. Following specifically the presentation of Newman (1977), the linearized 
kinematic boundary conditions, to O ( E ) ,  applied on the section and cavity axes, 
respectively, are (refer to figure 1 ) :  

w(x,O) = -y&) on 0 < x < 1, (17) 

w(x,o) = -y i (x )  on -1 < x < 0. (18) 

w(x, y )  is the perturbation velocity component in the vertical direction. 
An additional boundary condition, a dynamic condition, is required on the cavity 

boundary, since its position is unknown a priori. This condition is continuity of 
pressure across the cavity streamline. Referring to figure 2, the requirement p f  = p- 
across the streamline gives 

p,-p, = v+2-1. (19) 

But p ,  -p,  = -Pb, by (16), which is O(s) by the linearizing assumption. 
The velocity on the outer edge of the streamline, V+, to O(s) is, 

v+ = 1 --u(z, O ) ,  (20) 

where u ( x ,  y) is the axial perturbation velocity. Substitution of (20) into (19) gives 
the required dynamic boundary condition, to O(E) ,  on the cavity axis: 

u(z,O) = p, -1 < x < 0. (21) 

3.2. Solution 
The Hilbert problem represented by (17) and (21) is solved for a source distribution 
on the cavity axis as a function of Pb ; it is, on -1 < x < 0 : 
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The remaining cavity kinematic boundary condition, (la),  is then used to evaluate 
the locus of the cavity contour as 

The cavity length is determined in terms of Pb by acknowledging cavity closure as 
yc( -2) = 0 in (23). There results, utilizing (22), 

The pressure drag (coefficient) per unit span is then finally available 8 s  

where the non-dimensionalization involves the section base depth, 2y,(O). 
Formula (24) above is the relationship denoted as f(Pb, 1)  = 0 in the discussion 

following (13) ; it  is the second relationship between cavity base pressure and length 
required to close the mean base-flow solution. Formulas (19) and (20) also give 
the streamline velocity required in the dissipation maximization at (13). Non- 
dimensionally, to order E 

v8's(s) = i(l -!$b)* (26) 

However, it is first necessary to recognize that (26) is not uniformly valid over the 
cavity streamline. Thin-body theory, in general, is, in fact, not uniformly valid to 
any order, without special correction. Specifically, solutions are invalid a t  the body 
ends; the assumptions made on orders of magnitude in achieving the thin-body 
perturbation expansion are violated at  the ends, in general. This is readily apparent 
in the current problem. By (26), the cavity streamline velocity is constant over the 
streamline length. But the velocity along the contour cannot be constant if the 
cavity closes, and it must be zero at the after stagnation point. The dilemma is here 
easily eliminated to produce a uniformly valid first-order representation of V,, which 
exhibits the correct behaviour at  the separation cavity end, by the well-known 
procedure of M. J. Lighthill (1951). 

3.3. Lighthill correction of surface flow 
The Lighthill correction (Lighthill 1951) is produced by a purely kinematical local 
coordinate stretching. It removes the divergent characteristics of the thin-body 
perturbation expansion which first appears at the body ends in the third order, and 
renders the expansion valid at  the ends and uniformly convergent to the first two 
orders. Actually, Lighthill developed the correction for the leading-edge flow of 
aerofoils with camber and incidence as well as thickness, but it can be interpreted for 
trailing edges as well. The only requirement is that the thin-body edge, or end, 
possess a well-defined radius of curvature. 

Lighthill proceeds to show that the applicable coordinate stretching involves no 
more than a local shift of the existing end singularity to a point on the axis one-half 
the radius of curvature inside the body end. 

In the case at  hand, which involves the end of the separation cavity, which is the 
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thin body after end, the required coordinate shift is effected by modifying the 
contour streamline velocity, (26), as 

Here PTE is the cavity trailing edge radius of curvature. Normally, pTE would be fixed 
by the specified body geometry. In the present case it is expressible in terms of the 
problem unknowns, Pb and I, by definition, as 

limy,(s) = [@TE(I-8)It, 
8-1 

or, differentiating, 

Then, with q(s) = 2y:(s) from (23), 

q(s) is available from (22), with z replaced by -s for convenience. 
It is obvious that the corrected surface velocity, (27), possesses the correct 

behaviour with regard to cavity closure. At the stagnation point, s = I ,  the velocity 
is zero, as required. On the other hand, for pTE/Z = o( l ) ,  the velocity deviates only 
slightly from its constant uncorrected value, (26), until entering the immediate 
vicinity of the stagnation point. The smaller pTE, the more concentrated the effect. 
Obviously, the Lighthill correction allows axial derivatives to be first order a t  the 
body ends, which is the fallacy of the uncorrected theory. 

It is convenient to re-note here, in connection with (27), that the turbulent 
dissipation, as defined by (8)-(12), are all identically zero for the Kirchhoff open free- 
streamline model. In  that model, the vortex density along the open free streamline, 
and hence the free-streamline velocity, is constant. The vortex density is equal to the 
uniform stream speed and the streamline velocity is half the stream speed; this is 
necessary for the requirement of that model that the base pressure within the open 
cavity should equal the free-stream static pressure. This is entirely consistent with 
the recognized physics. Kinematically, the free streamlines can close only if the 
vortex density decreases along the streamlines (Ribaut 1983). The vortex density 
decreases along the streamlines owing to turbulent dissipation, which results in the 
mean closed cavity found in turbulent base flows. The Kirchhoff open model must 
therefore be viewed as the ideal asymptotic model in the limit of zero turbulent 
dissipation. The alternative interpretation cited earlier as that of an infinitely long 
cavity closed with non-zero turbulent dissipation at infinity does not satisfy the 
maximum dissipation requirement of (13). 
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FIGURE 3. Nash form. 

4. Solutions and applications 

is 
Substituting (27) into (12), the non-dimensional average turbulent dissipation rate 

where a = 
integration in (30) is readily performed to produce, to lowest order, 

with pTE given in terms of P,  and 1 by (29) and (22). The 

(31) 

Here a has been assumed to be O ( E ) ,  as is required by the Lighthill theory. Then one 
relation between P, and 1 is obtained as 

9‘ = -%( 1 -Pb) a( 1 + In a). 

9’(Pb, 1)  = max. (32) 

The other, referred to in the preceding section as f(Pb, 1)  = 0, is (24). 
Upon specification of the section geometry, y,(x), (32) and (24), with (29) and (22), 

determine the first-order base pressure and separation cavity length. Equation (25) 
then gives the section base drag. 

4.1. Nash form 

Figure 3 depicts the blunt-trailing-edge section used in the base flow experiments 
of J. F. Nash (Nash, Quincey & Callinan 1963). The specific dimensions of the 
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FIGURE 4. Dissipation rate versus separation cavity length, Nash form. 

configuration tested in the high-speed wind tunnel a t  NPL are indicated on the 
figure. This section type is somewhat general in that it includes the wedge section for 
I ,  = 1 ,  and at the other extreme, it becomes the semi-infinite parallel-sided section as 
y,(O) and I ,  tend to zero. 

The section geometric input required in the preceding formulas is exclusively the 
contour slope distribution, &x). For the figure 3 section, 

-ys(O)/l1 1--1, < z < 1 ,  
0 < z < 1-1,. Y W  = { 

Substitute (33)  into (24), (25) and (29), and then define 

A( l ,  I , )  = ( I +  1);- [( 1 + 2 - l , ) (  1 - Z,)]'. 

The solution formulation reduces to (31) : 

9' = -a( 1 -Pb)a( 1 +In a) 

with 

which is to be maximized, subject to 

I} = 0.  
P b + ~ - p ( z , l l ) + l l n  [ ( l + l ) i + l  

( 1  + 1 -  I , ) : +  ( 1  - Z,)t 

(33) 

(34) 

(35) 



562 W .  S .  Vorus and L. Chen 

-2.0 

i" 
- 1.5 

- 1.0 

L.5 
Pb = -0.854 

I~ 
O I  

/ '. 
i \. 

I ! 
\ i Flat plate . 

j normal to stream \ 
M = O  \ 

\ 
[Gadd 19621 '. 

'. '. '. 
M, = \ 

2 3 

= 0.792 

FIGURE 5. Nash form base-pressure variation. 

Then, the base drag coefficient per unit span is 

Figure 4 is a plot of Y(2) for the Nash form with ~ ~ ( 0 )  = 0.05 and I ,  = 0.6667, 
which was the configuration tested (figure 3). Pb has been eliminated in 9' of the 
figure 4 plot by substitution of (36) directly into (31). The solution point a t  1 = 0.0792 
is clearly evident on figure 4. The base pressure coefficient corresponding to this 
cavity length is calculated from (36) as Pb = -0.854. The maximum non-dimensional 
turbulent energy transfer rate a t  the solution point is 9& = 0.0626, from figure 4. 

A selection of Nash's experimental base-pressure results are shown on figure 5. 
This is a plot of mean pressure coefficient versus non-dimensional distance along the 
centreline of the wake, for varying Mach number M .  The Reynolds number at  the 
lowest Mach number of 0.4 was approximately 1.5 x los. 

The calculated mean separation-cavity characteristics corresponding to the 
uniform first-order base pressure of Pb = -0.854 at  the cavity length to base depth 
ratio of 0.792 are indicated on figure 5. 

Perhaps the most immediately notable aspect of the comparison on figure 5 is the 
character of the measured wake centreline pressure versus the calculated first-order 
base pressure over the cavity length. Nash warns that the experimental wake 
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FIQURE 6. Dissipation rate versus separation cavity length, 10 and 20% wedges. 

pressures of figure 5 were difficult to measure and are of questionable accuracy. 
Nevertheless, with due respect for this reservation, the measured data a t  the Mach 
number of 0.4, which is the only one of the set of much relevance here, suggests that 
the mean flow within the cavity still has some significant spatial variability at the 
test Reynolds number of approximately 1.5 x lo6; this spatial variability, in the 
mean, has been assumed to be higher order in the calculation, by (15). The negative 
pressure peak at approximately one-half the base depth downstream is thought to be 
due to the destabilization of the separated shear layers and their degeneration into 
vortex streets (Nash et al. 1963). It has been postulated (Goldstein 1938) that with 
increasing Reynolds number the vortex streets give way to more-or-less random 
turbulence. Furthermore, with the shear layers tending to destabilize and breakdown 
into turbulence closer to the body with increasing Re, it is tempting to conjecture 
that the limiting state, a t  very high Re, is an intensely chaotic, but, more-or-less 
randomly distributed turbulent flow, whose temporal mean, within the separation 
cavity, is basically quiescent. For such a flow, the mean pressure within the 
separation cavity would be expected to be more-or-less uniform, and not 
characterized by the pronounced peak exhibited in the Nash data. Any experimental 
evidence that suggests that the subject pressure peak flattens at very high Reynolds 
number (and at low Mach number) has, however, not been uncovered. 

Of course, the pressure must rise on approaching cavity closure, and far enough 
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FIQURE 7. Base-pressure coefficient, cavity length, and maximum dissipation rate versus wedge 
base offset. 

downstream it must return to the free-stream static pressure. This trend is obvious 
in the Nash data of figure 5.  The Lighthill correction could easily be applied to the 
uniform first-order base pressure to imply the rising characteristic downstream along 
the mean streamline. However, the predicted total head recovery a t  streamline 
closure so obtained would be erroneous. The concept employed here of lumping the 
mean field vorticity onto the separation streamline may be acceptable for purposes 
of approximating an integrated average dissipation rate, with the integral being 
reasonably tolerant to deviance very near the closure point. However, the pressure 
details a t  mean streamline closure are certainly not within the limits of the 
approximation. An average base pressure, reasonably representative away from 
cavity closure, such as that depicted on figure 5 ,  is probably about as much as can 
be expected from the proposed theory. 
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4.2. Semi-infinite parallel-sided section 
Observe from figure 3 that if the length of the parallel after-section of the Nash form, 
0 < x < 1-l,, tends to infinity, the dimensions y,(0) and I , ,  which are non- 
dimensional on the section length, tend to zero. The cavity length 1, which should in 
this case be of the order of y,(0), should then also tend to zero. Assuming 1 and I ,  to 
be of the same small order, A(1, I , ) ,  by (34), becomes, to lowest order, A(1, 11) = 1,. 
Then, (35), (36) and (37) become, to lowest order, 

Equation (31) is unaltered. The solution for this case therefore depends only on the 
ratio ys(0)/l, and is therefore independent of scale, as it must be. The solution is 

y,o = 0.633, Pb = -0.806, 9kax = 0.0600. 
1 

Note that this does not represent the solution for the rearward-facing step. In that 
case, y = 0 downstream of separation must be interpreted as a rigid plane. The 
presence of such a plane prevents the development of vortex streets, and thereby 
suppresses the large-scale turbulent mixing and the associated mean energy transfer 
to the dissipation scales. The rearward-facing-step problem, or any base-flow 
problem with a rigid plane of symmetry, appears to be more like the pressure-driven 
laminar base flow, where the internal cavity dynamics play the dominant role. The 
base pressures are much higher (less negative) and the mean cavity lengths much 
longer there than in the Reynolds-stress-dominated base flow treated in this work 
(Nash et al. 1963; h i e  & Rouse 1956). 

4.3. Wedge 
If I ,  is set to unity in (34)-(37), the Nash form (figure 3) becomes a wedge. In this case, 
with A(1,lJ = (i+Z)i, the relevant formulas are W ,  by (31), which remains 
unchanged, and the following : 

Similar to figure 4, figure 6 is a plot of W(l) ,  from (31), (38) and (39), for wedge 
bases of 10 and 20%. The solution points, at  1 = 0.171 and 0.370, respectively, are 
clearly evident on figure 6. 

Figure 7 is a plot of wedge base-pressure coefficient Pb, separation cavity length 1, 
and the maximum dissipation rate 9kax, versus wedge base offset. 

The drag coefficient versus y,(O) is plotted on figure 8. The experimental data 
points indicated are from the experiments of Lindsey (1938). 

Lindsey's drag experiments were conducted in an 11 in. high-speed wind tunnel 
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FIGURE 8. Drag coefficient versus wedge base offset; A, data from Lindsey (1938). 

using a pendulum-type force balance. The experimental drag coefficients shown for 
the 15', 30°, and 45' half-angle wedges were tested a t  Reynolds numbers of lo5, 
4 x lo4, 2 x lo4, respectively, but at a common Mach number of approximately 0.35. 
The wedges all had the same base depth y,(O), but different lengths to achieve the 
different apex angles. 

Lindsey's complete data set shows a very mild variation in drag coefficient with 
Reynolds number in the test range of approximately 2 x 103-105. This indicates that 
the drag forces were dominated by pressure, rather than skin-friction effects, and 
should therefore be validly comparable to the theoretical predictions of figure 8, 
which include no skin-friction drag a t  all. The theory requires a high but unspecified 
Reynolds number. 

The drag coefficient corresponding to Kirchhoff's open free-streamline model with 
Pb = 0 is included on figure 8 for reference; the Kirchhoff drag coefficient for the 
wedge is simply 

D = - .  4Y,(O) 
x 
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4.4. Discussion 
While the preceding results are undeniably encouraging with regard to the 
applicability of the proposed theory, it is in order to re-examine the assumptions 
implemented in the light of the some of the predicted magnitudes. 

Most critically, the section and attached separation cavity were assumed to be 
slender, and base pressure was assumed to be of slenderness order. These assumptions 
were necessary for allowing the convenience of simple linearized cavity flow theory 
for the closed free-streamline model. However, from the ensuing analysis and 
calculations based on this assumption, the predicted base pressure is clearly of order 
of the free-stream dynamic head, which is O( 1). The minimum absolute value, for the 
semi-infinite parallel sided-section, is lPbl = 0.806, and values well in excess of 1.0 are 
predicted for the wedges (figure 8). This implies axial perturbation velocities of 
around half that of the free stream, from (21). 

Further to this, figure 9 is a plot of the 15" (y,(O) = 0.268) wedge section and its 
calculated cavity streamline. This body would not be described as particularly thin; 
thinness is the basis of the linearized theory (a correction, the Lighthill correction, 
was, however, made for the relative bluntness of the cavity end). The parameter a for 
the figure 9 case, corresponding to pTE = 0.170 and 1 = 0.522 is a = 0.163; a was 
specifically assumed to be o( 1) in achieving the 9' formula for the linearized theory, 
(31). 

5. Conclusion 
The stretching of the theoretical assumptions that has exposed itself in the 

calculations is troublesome, as it arouses the suspicion that the good results could be 
fortuitous. The uncertainties arise entirely from the use of linearized cavity flow 
theory for the closed free-streamline model. That very simple and convenient theory 
is linearized on the basis of the thinness of the section and its attached separation 
cavity, as well as on the basis of a small cavity (base) pressure coefficient. The 
resulting cavity lengths and pressure coefficients calculated on the basis of the 
linearizing assumptions, while comparing very favourably with experimental results 
on mean turbulent base flow, are nevertheless not inarguably of the magnitudes 
assumed. It was actually recognized beforehand that the correct magnitude of the 
base pressure associated with blunt-body separation was not clearly in accord with 
the assumptions of the linearized theory. Nevertheless, linearized theory was applied 
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in view of its convenience. What was not anticipated was that the resulting 
predictions would be so correct ! 

Any uncertainty is, of course, resolved by implementing the theory with a nonlinear 
closed free-streamline model, e.g. Ribaut (1983). In spite of the order-of-magnitude 
increase in numerical complexity required to produce numbers for comparison with 
experiment, the procedure should be reasonably straightforward. The requirement, 
basically, would be to  find a closed cavity streamline contour that satisfied the 
kinematic boundary condition of zero normal velocity, and to  find a variable vortex 
strength along that contour such that the average dissipation rate, by (13), was 
maximum. Such a procedure would require several layers of iteration, or, perhaps 
preferably, would be implemented by a mathematical programming technique as a 
constrained optimization problem. Of course, the insight provided by application of 
the more approximate linear theory exhibited here would be totally obliterated. 

The linearized formulation demonstrated here should however be more applicable 
to a different, but probably more important, class of problems: that is, back 
separation of streamlined lifting sections rather than base separation of blunt 
symmetric sections. The pressure perturbations are typically smaller with separated 
lifting sections. A stalling foil, with separation points at the leading and trailing 
edges, experimentally demonstrates suction-side pressures more on the order 
consistent with the assumptions of the linearized theory. The linearized theory of 
super-cavitation of lifting foils is well developed, and conveniently available for 
extending the theory to  lifting problems. 

A final note concerns the usefulness of the theory, in the event that such is 
ultimately established. This is perhaps in the study of base-flow turbulence itself. 
On solution for the mean separation streamline velocity, a prediction of the 
turbulent dissipation rate per unit length of the streamline, d ' ( s ) ,  is given by (10). 
It is interesting to contemplate the experimental construction of d ' ( s )  in terms of the 
measured turbulent quantities defined by (9), and comparison with the theoretically 
deduced function. 
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